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December 16, 1986

On The Imaging of Fractal Surféces

Paul Kube and Alex Pentland

Computer Science Division
University of California, Berkeley
and
Artificial Intelligence Center, SRI International
Menlo Park, California

ABSTRACT!

We examine the imaging of standard Brownian Fractal surfaces, and
find that, given certain assumptions, a Fractal surface with power spectrum

proportional to f~f has an image with power spectrum proportional to
fEP.

1 Introduction

Fractal Brownian functions have found widespread use in computer graphics
because they produce surfaces that closely resemble natural surfaces. It is
natural, therefore, to ask if we may apply such an attractive model of nat-
ural surface shape to the problems of image analysis. Pentland [1] showed,
by modeling natural surfaces using Brownian Fractals, that interesting in-
formation about the imaged surface could be obtained.

In his analysis Pentland modeled the imaged surface using a vector-
valued plane-to-surface-normal Brownian Fractal function. The non-constructive
nature of this model, however, places unfortunate restrictions upen its use-
fulness. In this paper we analyze the imaging of surfaces modelled by Frac-
tal Brownian plane-to-elevation functions of the sort standardly used in
computer graphics. We thus obtain a model of surface and image that is

1This research was made possible by National Science Foundation, Grant No. DCR-
85-19283, by Defense Advanced Research Projects Agency contract no. MDA 503-83-C-
0027, and by grants from the Systems Development Foundation and the Alfred P. Sloan
Foundation. We would like to thank Gene Switkes and Eugene Wong of Berkeley and
Andy Hanson of SRI for helpful discussions.



constructive in nature, and therefore of potentially greater use in image
analysis.

2 Standard Fractal Brownian Models

In one topological dimension, a Fractal Brownian line function Vg (t) has
zero-mean Gaussian increments with variance

< [Vr@E+8)-Va@®]’ > « |6 (1)
where He(0,1). H is related to the fractal dimension D of Vg(t) by

D=2-H (2)

Further, Vg(t) has a random-phase Fourier spectrum with power Fg(f)
such that

Fu(f) o« [ (3)

H is related to 8 by
f=2H+1 (4)
In two topological dimensions, any “slice” through an isotropic Fractal

Brownian surface Vg(z,y) is a Fractal Brownian line function of identical
H. Thus we want

< Valz+8cosy,y+ 8sin) — Va(z, o) > « |67 (5)

independent of . Voss [2] shows that this requires the two-dimensional
power spectrum Fg(f, 8) of the surface to be

Fu(f,0) « f7° (6)
where .
B=2H+2 (7)

These two-dimensional surfaces can be constructed by filtering Gaussian
noise [2], or (more efficiently and flexibly) by constructing the an appropriate
Laplacian Pyramid [3]. Those in computer graphics often use a recursive
subdivision algorithm to approximate true Fractal Brownian surfaces [4].



3 Imaging of Fractal Brownian Surfaces

Let 2 = Vg (z,y) be a Fractal Brownian surface, and let us assume that:

(1) the surface is Lambertian (we will later partially relax this assump-
tion),

(2) the surface is illuminated by (possibly several) distant point sources,

(3) the surface is not self-shadowing.

We will also take 2 < O within the region of interest, and assume ortho-
graphic projection onto the z,y plane.

We will let I = (costsing,sin7sine,cose) be the unit vector in the
mean illuminant direction, where r is the tilt of the illuminant (the angle
the image plane component of the illuminant vector makes with the z-axis)
and ¢ is its slant (the angle the illuminant vector makes with the z-axis).

Then the normalized image intensity I(z,y) will be

pcosTsing + ¢gsinTsing + coso

I(z,y) = (P + ¢ + 1)1/2 (8)

where
p= £ Vi(zy) ©)
0= 5Va(z,y) (10)

[Note: as true Fractal Brownian surfaces are, strictly, nowhere differen-
tiable, we will assume throughout an approximation smoothed sufficiently
to allow p and ¢ to exist. See [5] for justification of this approach.|

3.1 Spectral Properties

If we then take the Taylor series expansion of I(z, y) about p, ¢ = 0 through
the guadratic terms, we obtain
os o

I(z,y) = cosog+ pcosrTsino + gsinrsino — 2—2—(;)2 + ¢°%) (11)

This expression gives an excellent approximation if p,g <« 1. We note
that for real surfaces, such as mountains, the maximum surface slope rarely
is more than 15°, i.e., typically p® + ¢2 < 0.1. Under these conditions the
linear terms of Eqn. (11) will dominate the power spectrum except when



the average illuminant is within £6° of the viewer’s position, i.e., when
sing < 0.1.
The complex Fourier spectrum Fy(f,8) of Vy(z,y) is, from Eqn. (6),

Fy(f,0) = f~P2i410 (12)

where ¢ is a random variable uniformly distributed on (0,2x), and ¢, is
the value “drawn” at position (f, §) in the Fourier plane.

Now since p and g are partial derivatives of Vg, their transforms F, and
Fy are related to Fy in an elementary fashion. We can write

Fo(f,8) = 2w cos Bfl_‘ﬁ/ze‘('ﬁ;.aﬂr/z) (13)

Fy(f,8)=2nsin 9 f1-B/2gidr0+m/2) (14)

3.1.1 Casel

When p, g are small and the illuminant is not behind the viewer (e.g., sino >
0.1) then we may neglect the quadratic terms of Eqn. (11) and consider

h(z,y) =coso + pcosTsine + gsinrsine (15)
In this case, the Fourier transform of the image I; is (ignoring the DC term):
Fr,(f,0) = 2xsing f1#/2¢ #1017/ [cos G cos T + sinfsinr]  (16)

and the power spectrum is

Fr(f,0)= 4r*sin® g 2P [cos & cos T + sin § sin f]z (17)

This spectrum depends, as expected, upon the illuminant direction. As
with the Fractal surface itself, however, the spectral falloff is isotropic: the
log of the power spectrum of the image has slope 2 — # with respect to log
frequency at almost all orientations (excepting a set of measure zero where

f=7+n/2).
3.2 Case?2

When the mean illuminant vector is almost parallel to the viewing direction
(i.e., sino = 0) the quadratic terms of Eqn. (11) can dominate and the
image of a fractional Brownian surface will look like

I(z,y) = coso (1 — (p* + ¢°)/2) (18)
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To within a constant factor, and ignoring DC, the power spectrum Fr, of this
image will be the Fourier transform of the autocorrelation function Rp2 g2
of p? +¢%, which we now investigate. The autocorrelation function is written

Ryayp2(z,y) = <[p(=z",9") +q(z",9")"]
[p(z" + z,v" +9)* + ¢(z" + z,9" + )] >
—_ < p(I*’y*)z +q(I$,y$)2 >
<p(z'+z,9" +9)* + gz’ +z,¥" + v)? $19)

where <> denotes expectation. Since p and ¢ are stationary, we can write

Ry 2(z,y) = < Pgopiy >+ < qgoq:g >
+ < qdopd, > + < phogz, >
— <plo><ph,>—<ghp><qi > |
- <q§o >< P§y>— < ply >< q2y> (20)

where we have put p;, for p(z,y), etc. Since p and ¢ are Gaussian processes,
the first four terms on the right hand side of Eqn. (20) can be rewritten

< pgﬂpiy > = 2< PooPzy >? + < p(2)0 >< P:y > (21)
< quQ:y > = 2 < googzy >+ < gfy>< Qig > (22)
< qgopig > = 2 < goopzy >+ < gy >< Piy > (23)
< Péoqu > = 2<poofey >+ < pho >< q:y > (24)
Thus
Rp2+q2(I) y) = 2(< PooPzy >2 + < Poofzy >Z
+ < qoopzy > + < qo0gzy >?) (25)

We know what the Fourier transforms of the autocorrelations of p and of g
are; they are just the power spectra of p and of ¢ respectively, easily obtained
from Eqns. (13) and (14):

F,{f,0) = dn’cos® §f*F (26)
F,(f,8) = 4n’sin? 952~ *# (27)

To see what the Fourier transform of < pog¢zy >=< goopz, > must
be, we construct the expression for the autocorrelation R, of I;(z,y) =



(pcos7sine + gsin7sine) and expand it to obtain:

Ry (z,y) = cos®rsin®o < poopsy >
+sin?rsin?o < q00Gzy >
+2cos7sin7sin® o < poggzy > (28)

If we now take the Fourier transform of this expression we find, as we already
know the power spectrum of I; (cf. Eqn. (17)), and the power spectra of p
and ¢, that we can solve for the Fourier transform Fpq of < poogzy >. We
obtain

F,q = 4n%sinf cosff*~7# (29)

With this result, we find that the Fourier transform of Ry2..2(z,y) is
then
Frp=2(Fp»Fp) + 4(Fpq * Fpg) + 2(F¢ x Fy) (30)

where # denotes convolution. In Cartesian coordinates, we can write

[u' u’ —u.)-l—v (‘U U)]z . 7o
Fr(u,v)= 2f fm [(w*% + o2 (2 — u)? + (v* — v)2)]F/2 du’dv” (31)

This integral diverges at u = v = 0 for any §. When 8 < 3, it diverges
at all u,v because of behavior of the integrand as u*,v* — co. We note,
though, that the spectral power of a real surface does not go to infinity as
frequency goes to zero, and any sufficiently high frequency components of a
surface can be ignored in 2 model of a physically realizable imaging process;
thus Fz can be taken as well defined everywhere.

To find an approximation to Fg, note that since g > 2, f2=? becomes
quickly very large as f approaches 0. Therefore we might think of the self-
convolutions represented in Eqn. (30) as instead being convolutions with
a localized averaging kernel, say a Gaussian with small variance. Then {at
least for frequencies sufficiently far from zero)

FoxFpnF, FyusxFy=Ff, TF+xF, =F, (32)
and thus
logFr, o« logFrp o« 2-§ (33)

The conclusion, therefore, is that when the mean illumination is at the
viewer’s position the image will have a power spectrum falloff approximately
proportional to f27#, i.e., the same relationship between surface Fractal
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Figure 1: Comparison of predicted (top row) versus the actual (bottom
row) radially-averaged log Fourier power versus log frequency for images
of Fractal dimension D = 2.25,2.5,2.75, assumning the Hluminant is at the
viewer’s position.

scaling parameter and image Fractal scaling parameter that we found with
oblique illumination. This conclusion is supported by the results of the
following simulation.

3.2.1 Simulation

Range maps z = Vy(z,y) for H = 0.25, 0.5 and 0.75 (corresponding to
surface of Fractal dimension of D = 2.75, 2.5, and 2.25) were illuminated
and viewed along the z axis and the power spectrum exponent was observed
for the resulting image. For each H, Vg was scaled to have E(|p|) = 0.1.
Figure 1 shows graphs of the log Fourier power versus log frequency of the
images’ spectrum; power at a frequency was averaged over all orientations
at that frequency.

3.3 Oblique Viewpoints

So far we have considered only views straight down on the surface. We
would like to consider the case of oblique views of the surface. Without loss
of generality we may consider only the case where in the viewer’s co-ordinate



system (z*,y", z*} the surface has partials (p*, ¢*) such that

PP=ptc ¢ =gq (34)
where (p,q) are (as in Egns. (9) and (10) the partials measured in the sur-
face’s co-ordinate system. Thus the surface has an averageslope dz* /dz* = ¢
with regard to the viewer,

In this case Eqn. (11} becomes
I(z, y) = [coso + (p+c)cosTsing + gsinrsine](1+ c?)"12
coso + ccosTsing

- (#* +¢°) (35)

2

If continue to assume that p,¢ are small, then in the oblique co-ordinate
system the frequency f* = &f, where § = (1+¢)"!cos® 8 + sin® @, and f is
the fregency in the surface co-ordinate system (i.e., there is foreshortening).
Similarly, the orientation 6* in the oblique co-ordinate system is a function
of the orientation # in the surface co-ordinate system. Thus Eqns. (13) and
(14) become:

Fye(f*,0%) = 2mcos 0 (0)6/2 P14 f1-P/2i(¢r0%7/2) (36)

Fye (f‘, B‘) = 27 sin §* (9)61/2—»6/4f1—»9/261'(¢f‘0+1r/2) (37)

If, as in Case 1 above, we are in a condition in which we may ignore the
quadratic terms of Eqn. (35), we then find that the complex spectrum of
the image (again ignoring the DC terms) is given by:

FI(f*, G‘) = 211‘(1 + (:2)_1/2fl—ﬁlzef(¢f,e+1r/2)
[(1— ¢}6*/8/1cos6*(8) cos T + sin 8" () sin 7]
— cos6*(6} cos011'61/2"8/4]'1—‘3/23"(45!‘0‘['*/2) (38)

and thus the power spectrum of the image, although now complexly
dependant upon the illuminant direction and average angle of view, still
has an isotropic falloff proportional to f2=# as in the non-oblique case. A
similar result holds for the case in which the quadratic terms of Egn. (35)
dominate. |



3.4 Non-isotropic Surfaces

We have considered only Fractal surfaces with uniform spatial statistics;
however many natural surfaces (e.g., tree bark)'can be modeled only with
anisotropic statistics. We would therefore like to consider surfaces Vu(z,y)
with “stretched” spectra:

F(f,0)=6fPl2¢is0 (39)

where again § = (1+ ¢)~cos? +sin?#. Examining Eqns. (6) - (33) using
this new surface function, we find that this new multiplicative stretching fac-
tor simply propagates through our calculations, resulting in an “stretched”
image spectrum whose spectral falloff, however, is still isotropic and whose
rate is the same as in the isotropic case.

3.5 Occlusion, Shadows and Highlights

We can, to a limited extent, analyze cases involving non-Lambertian sur-
faces, self-shadowing and cast shadows. The following sections are our first
step towards a more complete analysis.

3.5.1 Occlusions and Shadows

When the viewing angle becomes sufficiently oblique the high points of the
surface will begin to occlude the remainder of the surface; for viewing an-
gles that are extremely oblique, the effects of such occlusion will begin to
dominate the image. Similarly, when the illuminant becomes sufficiently
oblique, there will be self-shadowed, and when the illuminant direction be-
comes nearly tangential to the surface then the image will be dominated by
the effects of cast shadows,

When a surface occludes itself, there is a discontinuous jump between
points that are adjacent in the image. Because of this jump, the orienta-
tion at these image-adjacent points will be only very weakly correlated thus
producing a step discontinuity in the image. The spectrum of such a discon-
tinuity is proportinal to 1/f; i.e., the spectrum of a step discontinuity falls
off much more slowly than does the normal image spectrum. As a result
when such steps are added to the image the high freqency content of the
image quickly becomes dominated by their spectral contribution.

Similarly, casts shadows introduce large amplitude step edges into the
image. Again, the high frequency content of such edges quickly comes to
dominate the spectral content of the image.



3.5.2 Highlights

Highlights occur when the surface orientation exactly reflects the incident
illumination toward the viewer; i.e., they are associated with a particular
level-sets of the (independent) p and ¢ functions. That is, hightlights occur
at the intersection of separate level-sets of the p and ¢ functions. From Man-
delbrot [6], we know that both the level-set of a Fractal Brownian surface
and the surface itself have the same scaling parameter H. Thus the set of
image highlights will be the intersection of two sets of dimension D = 2H+1.
We speculate that the dimension of this intersection set is D = 2H. If so,
then by identifing the set of surface hightlights we can {(by estimating their
Fractal scaling parameter) directly obtain the Fractal scaling parameter of
the surface 1tself.

4 Summary

We have analyzed the imaging of Fractal Brownian surfaces such as are con-
structed in computer graphics. We have found that, given the Lambertian
assumption and no self-shadowing, that the image of a Fractal Brownian
surface with spectrum proportional to f~f has a spectrum proportional
to f2=P. Thus the main result of this paper is that, in the case of the
non-isotropic Brownian Fractals used in computer graphics, we can use the
Fractal scaling parameter (spectral falloff) of the image to predict the Frac-
tal scaling parameter of the surface. We also have shown that this result
is not affected by multiplicative “stretching” of the surface and, given that
p* + ¢? is small, is relatively unaffected by viewing position.

These results agree with those obtained using an isotropic Fractal surface
model [1]. The major advance of this paper is that, because we have used
a Fractal surface model that is defined constructively, we can now easily
synthesize surfaces whose images have the desired Fractal scaling behavior.

And finally, it appears that self-shadowing and self-occlusion produce
image features which “swamp” the normal Fractal scaling characteristics
with f~1 noise. The fractal scaling parameter of imaged highlights, however,
appears provide us with a method of obtaining an independent estimate of
the surface’s Fractal scaling parameter.
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